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SUmmARY 

The renormmlization group technique, developed in the mean field 
theory, is applied here as a method for calculating of elastic or 
viscoelastic properties of heterogeneous materials with complex 
structures. The method consists in averageing of properties of 
small volume elements of the heterogeneous system by step-wise 
application of a recurence relation which renormalizes properties 
of the group of neighbouring cells to properties of a new cell of 
larger dimensions. The recurence relations are derived on the 
basis of the "packet" model - a group of eight elemental cells. 

INTRODUCTION 

Models applied for predicting mechanical properties of heteroge- 
neous (multi-phase) materials can be classified into various 
groups : (I) the simple mechanical coupling models which provide 
a phenomenological representation of the properties-composition 
dependences,(2) "self-consitent" models based on analysis of me- 
chanical behaviour of representative inclusion in a homogeneous 
body having the properties of macroscopic composite, and (3) mo- 
dels predicting limits or bounds of mechanical response - based 
on the mechanical analysis of some idealized structures. Models 
of all these groups have been reviewed for example by Dickie (i). 
Recently, a new "packet" model has been proposed (2) which does 
not fall into any of the above groups. It can be recognized that 
this model is based on the concept which is very similar to that 
of renormalization group method (3) developed in the mean field 
theory. This paper will discuss modelling of mechanical proper- 
ties of heterogeneous materials on the basis of the renormaliza- 
tion group method as well as it will show a generalized solution 
related to the "packet" model. 

The Renormalization Group Method 

M2~y of the physical problems demand consideration of a large num- 
ber of independent parameters or variables of the system, while 
most of the theoretical problems may be succesfully solved only 
when the nunber of variables is considerably reduced. The above 
remark is closely related to the problem of description or mecha- 
nical properties of heterogeneous bodies. The reduction of 
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variables is usually made by considering a small part (volume 
element) of the system. On the basis of an analysis of this part, 
regarded as representative element, the conclusions are drawn 
about the properties of the macroscopic body. It is, for example, 
the method on which the "self-consistent" models are based. 
The question arises, however, which part of the system may be 
regarded as the representative one. Minimal size of it depends on 
the system and its state and has to be related to the correlation 
radius of local structure and the range of interactions. If the 
correlation radius is small i.e., for example of the order of the 
inclusion size, the "self-consistent" method seems to nrovide a 
reasonable a~proximation of mechanical properties of macroscopic 
system. In many real structured heterogeneous systems correlation 
extends however, over large distances and on various levels of 
structural order. It is clear that in such cases it is not pos- 
sible to apply methods which assume direct relations between 
properties of microscopic elements and properties of macroscopic 
body and which are consequently valid only for systems in which 
the correlation radius is small. 

The method which can provides solutions of more complicated prob- 
lems is the renormalization group_ method. It appeared especially 
succesfull in the theory of critical phenomena (3, 4). The appro- 
ximation made in the renormalization group method is based on the 
reduction of independent variables too, however, in this method 
it is made not by simple limitation of considerations to a small 
element of the system, but by a step-wise reduction of dimensions 
of the element from the macroscopic size to the size of the order 
of the smallest correlation radius. 

The procedure of renormalization when a~plied to mechanical pro- 
perties of heterogeneous systems can be formulated as follows. 
The macroscopic system is divided into cubic cells of dimenions 
comparable with the smallest size of heterogeneities. It ensures 
that each cell contains with some geometrical approximation, only 
one homogeneous component. Mschanical properties of cells are 
therefore known if only the properties of individulal components 
of the system are available. Considering at first a short range 
mechanical interactions between cells we can build up the cells 
into groups of nearest neighbours. In order to take into account 
neighbours in three dimensions the smallest group of nearest 
neighbours has to contain eight elemental cells. In general, the 
group may contain larger number of cells depending on the range 
of interactions assumed. The properties of the group are dependent 
on the properties of individual cells and the parameters descri- 
bing their mechanical interactions. If we would be able to descri- 
be these interactions we could calculate the properties of the 
group as a whole. The group would consitute in this way a new 
renormalized cell with known properties. If we repeat the renor- 
melization procedure once again we get again new larger cells with 
properties dependent on properties and interactions of a large 
number of elemental cells. Fig. 1 illustrates schematically three 
steps of renormalization. In each renormalization step the number 
of variables describing a variety of properties and interactions 
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Fig. i. Illustration of three steps of renormalization in the 
case of three dimensional heterogeneous system. 

of elemental cells is formally reduced to a new variables descri- 
bing the properties of the group of cells. If we assume that the 
properties of each elemental cell are described by the modulus 
matrix E o we can express the transformation which renormalizes 
a set of Eoi matrices into a new effective modulus matrix E I of 
the group as follows 

T(Eoi) = El ( la)  
where T denotes the renormalization transformation and i is the 
nt~ber of the cell incorporated in the group. The same renormali= 
zation can transform.i matrices E I into matrix E 2 

T(Eli  ) -- E 2 . . .  (lb) 
and so on. 
If there exist matrices E* for which 

T(Ei) = E* (2 3 

than they can be regarded as r ep resen ta t ive  fo r  the p rope r t i e s  of 
macroscopic body. The number o f  renor rml iza t ion  steps leading to 
matrices E* will describe the size of the smallest cell of the 
system with the properties of the macroscopic body. 

According to the procedure described, if we only know the form of 
the renormalization transformation T we are able to describe mac- 
roscopic properties of the heterogeneous body in terms of the pro- 
perties of its constituents. To find the form of the transforma- 
tion T is however not an easy task. An example of such transfor- 
mation has been proposed for the "packet" model in previous pa - 
pers (2, 5). Here we would like to present more general form of 
this transformation considering both normal and shear deforma - 
tions of cells and considering also noncubic geometrical forms of 
cells which could better reflect structural peculiarities of 
heterogeneous systems. 

The renormalization transformation based on the "packet" model 

The group (or "packet") built up of eight cells is assumed here 
as a set of nearest neighbours. As described previously (2), the 
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cells are mechanically coupled in such a way that the adjacent 
cells deform equally in respective directions. It ensures justi- 
fication of the continuity requirements inside the gTOup. The 
cells in the group are denoted by natural indices i, j, k and 
have in undeformed state the dimensions Yi, Bj, and ~k along the 
axes x, y and z respectively. It is assumed that the following 
conditions are satisfied 

2 2 
z Yi=l, z 8.=1 and ~ ~k=l (3) 

i=l j=l ] k=l 

which means that the group is treated as a unit element for the 
actually considered scale. 

The strains inside the group are averaged in the following way 

Z YiEx(i,j,k)~=e x Z 6jeyzj=Syz 
i j 

Z Bjey(i,j,k)=~y Z ~kCzyk=ezy 
j k 

~kez(i,j ,k)=E z Z ~k~zxk=~zx 
k k 

Yi~xyi=exy ~ Vi~xzi=Cxz 
1 i 

Z Bj ~yxj =~yx 
] 

(4) 

where the shear strain components on the right hand side of 
equations are the mean strains of the whole group and the strain 
components on the left hand side are the strains of respective 
adjacent cells. 

It is ass~ned that the mean value of stress con~ponents acting on 
all cells of the group are equal to respective extrenal stresses 
acting on the group. This leads to the following equations of the 
stress balance 

ZZS~k~x(i,j,k)=o x (a) 
jk J 

zz%y;~v(i,j,k)=~ (b) 
ki ~ ~ I I 

~YiBjOz(i,j ,k)=o z (c) 

ZZ8~ (i,j,k)=~xy (d) 
jk J ~" ~I 

ZZy~a~(i,j,k)=~y x (e) 
ik ~ ~ ~" 

ZZy;%o ,(i,j,k)=o ~ (f) 
ik ~ ~" I" J~ 

ZSYi6~o z. (i,j,k)=~ z. (g) 
ij ~ Y Y 

Zr.y~..(i,j ,k)=ozx (h) 
ij • J ~x 

ZZS~ ~kOxz (i,j.,k) =~xz (i) 
jk J 

The properties of every element in the group are given by the 
constitutive equations in the following from 
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[On(i,j  ,k) ] = [Emn(i, j ,k)] [Cm(i, j , k)] (6) 
where [On( i , j ,k ) ]  and [om(i,j,k)].. are 9-element matrices of s t r e s s  
and s t r a i n  components r e spec t ive ly ,  and [Enn( i , j ,k ) ]  r ep tesen t s  
the matrix of  medulae of the element i , j , k .  The form of  matr ix 
is  dependent on the type of mechanical p roper t i e s  of the c e l l .  
The modulae matrix assumed here has the form 

[Emn(i, j ,k)]= 

Eli E12 El3 

El2 E22 E3a 

El3 E23 E33 
E~4 

E55 
E66 

(6a) 

which considers the anisotropy of mechanical properties of cells. 
Introducing the following assignements 

r I ey(i,2,k)=E 4 

Ex(2,j,k)=r 2 ez(i,j,l)=e 5 

ey(i,l,k)=e 3 Cz(i,j,k)=a 6 

and combining eqs. (5a-c) and (6) we can write 

ZPlnen=ex (a) ZP4ncn=Oy (d) 
n n 

ZP2nEn=O x (b) ZP6nen=Oz (e) 
n n 

ZP3nEn=O (c) ZP6nen=Oz (f) 
n Y n 

where the values of Pmn coefficients are : 

(7) 

(8) 

P: :=ZE~.B-E:I (l,j ,k) 
kj Kj 

PI 2 =0 

Pl3=gl~akEl2(l,l, k) 

Ply+ =132~c~kE 12 (1,2,k) 

P 15=~IjB j El 3 (l,j ,i) 

P21=O 

P22=EE~B-EII(2,j,k) 
kj K j 

P23=Bl~kE12(2,1, k) 

P24=B2~akE12(2,2,k) 

P25=al~SjE1a(2,j ,1) 
J 
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Pl6=a EB E13(l,j,2) 2j j P26=~ Z8 EI3(2,j,2 ) 2j j 

Pa1=Yl~akE21 (1,1 ,k) P41 =u (1,2,k) 

(2,1,k) =y2 .kE  <2,2,k) 

P33=~kYiE22 (i,i, k ) P43 =0 

P 3g=O P44 =~C~ku (i ,  2,k) 

P35=al.EYiE23 ( i ,  1,1) P45=~I.EYiE23 (i, 2,1) 
1 1 

P36=a2EYiE23 (i,1,2) P46=e2 .ZYiE23 (i, 2,21 
J 1 

P51=~ ZB E31(I,j,I) = . " lj j P61 Yl~BjE31(1,3, 2) 

Ps2=~2.ZSiE31 (2, j ,1) P62=Y2 .ZgiE31 (2 , j ,  2) 
3 ~ J " 

P5 a=B 1 .ZYi E 32 ( i ,  1,1) P63=B 1 .Z~iE 32 ( i ,  1,2) 
1 1 

Ps4=B 2EYiE32 (i, 2,1) P64=B2.ZYiE32 (i, 2,2) 
1 1 

P55=~ZYiBjE33(i,j,l) P65=0 
IJ 

P56=0 P66=.~.ZYiBjE33 (i,j ,k) 
iJ 

From eqs. 
in the fol lowing form 

s 

e3=(S21e2+S22e4+S23e6+S24Ox+S25Oy+S26oz)/S 

e5=(S31e2+S32e4+S33~6+S34Ox+S35Oy+S36oz)/S 

where coefficients Smn are given by deteminants 

S = P31Pa3 P35 
1 P53 P55 

(7a,b and c) we can calculate three strain components 

(9) 
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Sll = 

-P12 P13 P15 

-P32 P33 P35 , 

-P52 P53 P55 

I -P14 P13 P15 

SI2=I-P34 P3a P35 
[-P54 P53 Ps5 

I -P16 P13 Pls 

$13 = -P36 P33 P35 

-P56 P53 P55 

821 = 

PII-PI2 P15 

P31,P32 P35 ) 
P51-P52 P55 

$22 = 

P11-P14 P15 

P31-P34 P35 

P51-P54 P55 

l P11-P14 P15 

, S23 = P31-P36 P35 

P51-P56 P55 

S31 = 

P11PIa-P12 

P31P33-P32 

P51P53-P52 

) S32 = 

PI1PI3-PI4 

P31P33-P34 

P51P53-P54 

S33 = Pll PI3-PI6 
, P31P33-P36 

P51Psa-P56 

814 = P33 P35 , 

P53 P55 
I Pl3 P15 PI3 Pl5 

S15 = ) S16 = ) 
]P53 P55 P33 P35 

$24 = 

$34 = 

P31 P35 , $25 PII PI5 , $26 = PII PI5 

P51 P55 P51 P55 P31 P35 

P31 P33 IPll PI3 PII PI3 

$35= I $3~ = 
P51 P53 P51 P53 P31 P33 

If the values of r given by eqs. (9) are introduced to eqs. (8b), 
(8d) and (Sf) the latest may be rearranged in the following form 

TIIe2+TI2r = Tl4Ox+Tl5oy+Tl6O Z 

T21e2+T22r = T24ox+T25oy+T26o Z 

T31r = T34ox+T35Ox+T36~z 

TI1=P22+(P23S21+P25S31)/S 

TI2=P2~+(P23S22+P25S32)/S 

TI3=P26+(P23S23+P25S33)/S 

T21=P42+(P~ISII+P43S31)/S 

T22=P44+(P~ISI2+P43S32)/S 

T23=P~6+(P41S13+P43S33)/S 

T31=P62+(P61SI1+P63S21)/S 

T32=P64+(P61S12+P63S22)/S 

T33=P66+(P61S13+P63S23)/S 

where 

T14=I-(P23S24+P25S34)/S 

TIS=-(P23S25+P25S35)/S 

TIB=-(P23S26+P25S36)/S 

T24=-(P41SI4+P43S34)/S 

T25=I-(P41SI5+P43S35)/S 

T26=-(P~ISI6+P43S36)/S 

T3~=-(P61S14+P63S2~)/S 

Ta5=-(P61SI5+P63S25)/S 

T36=I-(P61SI6+P63S26)/S 

(m) 
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From eqs. (i0) one can calculate the strain components 

E2=A41ox+A42~y+A43o z 

~4=A51ox+A52Oy+A53o z 

e 6 =A6 1 QX +A620y+A~ 3 o z 

where 

ITl5 TI2 T13 
]Tl4 TI2 Tl3 i T23 , A43 1 

i T23 A42=~T25 T22 A~l=~ r2# T22 
T34 T32 T33 T35 T32 T33 

(il) 

T16 Tl2 TI3 

T26 T22 T23 
T36 T32 T33 

IT11T14 
1 

A51=-~T21 T24 
T31 T34 

T13 
T23 , 
T33 

A52=~I II T15 T13 
I T25 T23 

T31 T35 T33 

ITll T16 T13 
i T23 A53=~T21 T26 
T31 T36 T33 

ITll T12 
i 

A61=~ T21 722 
T31 T32 

TI4 
T24 , 

T34 

ITll TI2 T15 
A62=~ T21 T22 T25 

IT31 T32 T35 

ITll TI2 TI6 
A631T21 T22 T26 

T3z T32 T36 

ii I TI2 
A = T21 T22 

1 T32 

and the other 

T131 
T23 
T33 

strain components according to (9) and (ll) are 

el=AllOx+Al2Oy+Al3O z 

e3=A21Ox+A22oy+A23o z 

e5=A31Ox+A32Oy+A33o Z 

where 

AII={SI4+SI IA41+SI2A51+SI3A61)/S 
AI2=(S15+SIIA42+S12A52+S13A62)/S 
A13=(SI6+SlIA43+SImA53+SI3A63)/S 
A21=(S24+S21A41+S22A51+S23A61)/S 

Then according to equations (4) we have 

Sx=(yiAll+y2A41)Ox+(yiA12+y2A42)Oy+(x1A13+y2A43)~ 

ey=(BIA21+B2Asl)~x+(BIA22+B2As2)oy+(BIA23+B2A53)Oz 

Cz=(~iA31+~2A~l)Ox+(~iA32+~2AG2)Oy+(=lA33+~2A~3)Oz 

(12) 

A22=(S25+S21~2+S22A52+S23A62)/S 
A23=(S26+S21A43+S22As3+S23A63)/s 
A31=(S34+S31A41+S32A~I+S33A61)/S 
A32=(S35+S31A42+S32A52+S33A62)/S 
A33=(S36+S31A43+S32As3+S33A63)/S 

(13) 
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which gives a part of constitutive equation of the group of cells 
in the form 

.x., . c,, c., 1 .... 
~z LC3i C32 C33] o z 

(14) 

where C.. are the compliances of the whole group expressed by 
respective coefficients in eq. (13) i.e. for example 

Cil=yiAil+y2A4i 

C2i=6iA2i+~2Asi 

CI2=yIAI2+y2A42 ... 

C22=61A22+B2As2 ... 
(is) 

In analogous way by solution of sets of eqs. 
get for shear deformation : 

6- Yi 
~yz=(~j) ~ Cxz = (~R?i) ~xz 

~k Yi 
ezy=(~R?k)azy e =(Zw:--)~ xy iKSi xy 

zx kK3k zx yx jK6j yx 

where the coefficients R are given by 

(4), (5) and (6) we 

(i6) 

Rij --~Yi~kE,4 (i, J ,k) 

R2k=~YiB~Es 5 (i,j ,k) 
ij J 

R3k=Z~. YiSj E 66 (i,j ,k) 
ij 

R,.=ZZS.mE77(i,j,k) 
~i jk ] K 

R5i=ZZ6~kE88(i,j,k) 
jk J 

R6j =~Yi~k E 99 (i, j, k) 

(17) 

Relations (14) and (16) play a role of constitutive equations of 
the group of eight cells. The compliance constants C i. in these 
relations can be recalculated to respective modulus ]constants 
for the group which are dependent on modulae of cells constitu- 
ting the group. In this way the solution described by eq. (i) is 
found in non-explicite form and may be used as a recurence rela- 
tion in the renormalizatian procedure. 

References 
i. DICKIE R.A., in "Polymer Blends" Eds. Paul. and Newm~, 

Acad.Press, N.Y. (1978) Vol.l,p.3S3 
2. PAKULAT., in '~ulticomponent Polymer Systems" Eds.E. 

Martuscelli, R.Palumbo, M.Kryszewski, PlenunPress (in press) 
3. WILSON K.G. and KOQJT J., Phys.Repports, 12C, 75(1974) 
4. FISHER M.E., Rev.Mod.Phys., 46, 597(1974) 
5. PAKULA T., Colloid and Interface Sci. (in press) 

Received November 3 / Accepted November 7, 198o 


