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SUMMARY

The renormalization group technique, developed in the mean field
theory, is applied here as a method for calculating of elastic or
viscoelastic properties of heterogeneous materials with complex
structures. The method consists in averageing of properties of
small volume elements of the heterogeneous system by steo-wise
application of a recurence relation which renormalizes proverties
of the group of neighbouring cells to properties of a new cell of
larger dimensions. The recurence relations are derived on the
basis of the "packet" model - a group of eight elemental cells.

INTRODUCTION,

Models applied for predicting mechanical properties of heteroge-
neous (multi-phase) materials can be classified into various
groups : (1) the simple mechanical coupling models which provide
a phenomenological representation of the properties-composition
dependences, (2) "self-consitent' models based on analysis of me-
chanical behaviour of representative inclusion in a homogeneous
body having the properties of macroscopic composite, and (3) mo-
dels predicting limits or bounds of mechanical response - based
on the mechanical analysis of some idealized structures. Models
of all these groups have been reviewed for example by Dickie (1).
Recently, a new ''packet'’ model has been proposed (2) which does
not fall into any of the above groups. It can be recognized that
this model is based on the concept which is very similar to that
of renormalization group method (3) developed in the mean field
theory. This paper will discuss modelling of mechanical proper-
ties of heterogeneous materials on the basis of the renormaliza-
tion group method as well as it will show a generalized solution
related to the "packet' model.

The Renormalization Group Method

Many of the physical problems demand consideration of a large num-
ber of independent parameters or variables of the system, while
most of the theoretical problems may be succesfully solved only
when the number of variables is considerably reduced. The above
remark is closely related to the problem of description or mecha-
nical properties of heterogeneous bodies. The reduction of
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variables is usually made by considering a small part (volume
element) of the system. On the basis of an analysis of this part,
regarded as representative element, the conclusions are drawn
about the properties of the macroscopic body. It is, for example,
the methcd on which the ''self-consistent" models are based.

The question arises, however, which part of the system may be
regarded as the representative one. Minimal size of it depends on
the system and its state and has to be related to the correlation
radius of local structure and the range of interactions. If the
correlation radius is small i.e., for example of the order of the
inclusion size, the "self-consistent" method seems to provide a
reasonable approximation of mechanical properties of macroscopic
system. In many real structured heterogeneous systems correlation
extends however, over large distances and on various levels of
structural order. It is clear that in such cases it is not pos-
sible to apply methods which assume direct relations between
properties of microscopic elements and properties of macroscopic
body and which are consequently valid only for systems in which
the correlation radius is small.

The method which can provides solutions of more complicated prob-
lems is the renormalization group method. It appeared especially
succesfull in the theory of critical phenomena (3, 4). The appro-
ximation made in the renormalization group method is based on the
reduction of independent variables too, however, in this method
it is made not by simple limitation of considerations to a small
element of the system, but by a step-wise reduction of dimensions
of the element from the macroscopic size to the size of the order
of the smallest correlation radius.

The procedure of renormalization when applied to mechanical pro-
perties of heterogeneous systems can be formulated as follows.

The macroscopic system is divided into cubic cells of dimenions
comparable with the smallest size of heterogeneities. It ensures
that each cell contains with some geometrical approximation, only
one homogeneous component. Mechanical properties of cells are
therefore known if only the properties of individulal components
of the system are available. Considering at first a short range
mechanical interactions between cells we can build up the cells
into groups of nearest neighbours. In order to take into account
neighbours in three dimensions the smallest group of nearest
neighbours has to contain eight elemental cells. In general, the
group may contain larger number of cells depending on the range
of interactions assumed. The properties of the group are dependent
on the properties of individual cells and the parameters descri-
bing their mechanical interactions. If we would be able to descri-
be these interactions we could calculate the properties of the
group as a whole. The group would consitute in this way a new
renormalized cell with known properties. If we repeat the renor-
malization procedure once again we get again new larger cells with
properties dependent on properties and interactions of a large
number of elemental cells. Fig. 1 illustrates schematically three
steps of renormalization. In each renormalization step the number
of variables describing a variety of properties and interactions
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Fig. 1. TIllustration of three steps of renormalization in the
case of three dimensional heterogeneous system.

of elemental cells is formally reduced to a new variables descri-
bing the properties of the group of cells. If we assume that the
properties of each elemental cell are described by the modulus
matrix E; we can express the transformation which renormalizes

a set of Ey; matrices into a new effective modulus matrix E; of
the group as follows

T(E,) = F (1a)

where T denotes the renormalization transformation and i is the
number of the cell incorporated in the group. The same renormali-
zatjon can transform.i matrices E; into matrix E,

T(Eli) = E2 oo (1b)
and so on.
If there exist matrices E* for which

T(E}) = E* (2)

than they can be regarded as representative for the properties of
macroscopic body. The mumber of renormalization steps leading to
matrices E* will describe the size of the smallest cell of the
system with the properties of the macroscopic body.

According to the procedure described, if we only know the form of
the renormalization transformation T we are able to describe mac-
roscopic properties of the heterogeneous body in terms of the pro-
perties of its constituents. To find the form of the transforma-
tion T is however not an easy task. An example of such transfor-
mation has been proposed for the "packet" model in previous pa -
pers (2, 5). Here we would like to present more general form of
this transformation considering both normal and shear deforma -
tions of cells and considering also noncubic geometrical forms of
cells which could better reflect structural peculiarities of
heterogeneous systems.

The renormalization transformation based on the "packet” model

The group (or 'packet') built up of eight cells is assumed here
as a set of nearest neighbours. As described previously (2), the
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cells are mechanically coupled in such a way that the adjacent
cells deform equally in respective directions. It ensures justi-
fication of the continuity requirements inside the group. The
cells in the group are denoted by natural indices i, j, k and
have in undeformed state the dimensions vji, B;, and oy along the
axes x, y and z respectively. It is assumed tﬁat the following
conditions are satisfied

2 2 2
I vy.=1, T B.=1 and 3 ap=1 (3)
i=1 t j=1 3 =1 K

which means that the group is treated as a unit element for the
actually considered scale.

The strains inside the group are averaged in the following way

i Yiax(i,j,k)=ex ? Bjey2j=€y2

? Bjey(i,j,k)=ey i akezyk=ezy

i e, (1,3,K)=e, ﬁ Ok®zxk ©zx 4
P ityiTxy P Vitxei T

RS RCS ReC:

where the shear strain components on the right hand side of
equations are the mean strains of the whole group and the strain
components on the left hand side are the strains of respective
adjacent cells.

It is assumed that the mean value of stress components acting on
all cells of the group are equal to respective extrenal stresses
acting on the group. This leads to the following equations of the
stress balance

?ZBj“kcx(i’j’k)=0x (a) ;2Yimk0yz(i,j,k)=cyz €3
Jk ik
l)gakYiOy(i,j,k)m)’ ®) i?YiBjcz}'(i’j’k)%ZY (&)
ItviBi0,(1L,3.00%0, (@) 22850, (1,5,10%0,, ()
ij v
Zjisjakoxy(i’jsk):oxy (@) ;ZBjakcxz(i,j-,k)=sz W
j Jk
(e)

rZy:a 0. (1,j,k)=c
ik TRy yx

The properties of every element in the group are given by the
constitutive equations in the following from
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[On(i,j,k)]=[Emn(i,j,k)][Em(i,j,k)] (6)
where [cn(i,j,k)] and [gm(i,j,k)1 are 9-element matrices of stress
and strain components respectively, and [Emn(i,j,k)] reptesents

the matrix of modulae of the element i,j,k. The form of matrix
is dependent on the type of mechanical properties of the cell.
The modulae matrix assumed here has the form

E11 Eyp Ej3
E12 Eop Ejzj
Ey3 Ep3 Esj

E _(i,3,k]=
m Eyy

(6a)

Ess

Ege

which considers the anisotropy of mechanical properties of cells.
Introducing the following assignements

ex(l,j,k)=e1 ey(i,Z,k)=e4

EX(Z’j’k)=€2 Ez(i,j,l)=€5 (N
ey(i,l,k)=€3 EZ(i’j’k)=€6

and combining eqs. (5a-c) and (6) we can write

IP = P = d

n In*n %x (a) n 4n®n % (d)

ZP2n€n=ox (b) ZP6nen=cZ (&) 3
n n

P, e =c ©) IP, e =g (H

n Inn "y n én'n "z

where the values of Pmn coefficients are :

Pl 1=ZZOLkB-E11(13j’k) P21=O
kj < J

Py1,=0 P22=22ak3jE11(2,j,k)
kj
P13=31£dkE12(1,1,k) P23=Bliak512(2,1,k)
P14=32iak512(1,2,k) P2q=82§akE12(2,2,k)
P1s=a; 28,E13(1,3,1) P2s=oyI8,E13(2,5,1)

J J
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P16=a2¥BjEl3(1:j92)
J

P26=d2¥BjE13(2’j,2)
J

P31=Y1EakE21(1>1’k)
P32=Y22akE21(2,1,k)
k
P33=ZZ“kYiE22(i’1sk)
ki
P3,=0
P3s=a; Iy;B23(1,1,1)
1

P3g=a,zv;Ez3(i,1,2)
J

Phl =Y1§ukE21(l,2’k)
qu =Y2£akE21(2’2’k)

P =0
43
Pyy=rEoyy;E22(1,2,K)
ki
Ph5=a1?YiE23(i’2,1)
i

P46=a2§Y1E23(i’2’2)

P51%v; 285831 (1,3,1)
J

P52=v,285E31(2,3,1)
J

P53=81?YiE32(i,1,1)
1

P5,=8,1yv;E32(1,2,1)
1

P55=Iiv;B.B33(i,],1)

1) )
P56=0

P61=Y1§BjE31(1:j’2)
Pe2=v,285E31(2,3,2)

J
P63=81¥Y1E32(i>1,2)
1
P6H=82¥YiE32(i’2,2)
1

P66=;§YiBjE33(i’j!k)
1)

From egs. (7a,b and c) we can calculate three strain components
in the following form

€1=(S1162*51264+5) 386 +5140,*S150, +5160,)/S

Yy
€3=(521€2+322€u+523€6+5240X+Sz50y+5260Z)/5 €

€57 (8316283264 53366 +5340, +5350, +5360,)/5
where coefficients Sy are given by determinants

P11 P13 Pis
S = (P31 P33 P35
Ps; Ps3 Pss



Spy=

S3u=

=|-P32 P33

-Py2 P13 Pis
P3s

-Ps» P53 Pss

Py1-P12 Pis
P31-P3; P35

P51-P5y Pss

Py3-Pyy

P33-P3y
P53-Psy

P33

Ps3

-P1y P13 Py
»  S12=(-P3y P33 P35, S13°
=Psy Ps3 Pss
P11-Pyy Pis
»  S20=| P31-Pay P3s|, Sp3=
P51-Psy Pss
P11 P13-Pyy
s S32=| P31 P3y3-Pay|, S33=
P51 P53-Psy
Pi3 Pys P13 P35
S15= s S16=
Ps3 Ps5 P33 P3s
Py; Pis Py; Pis
Sos s Spe=
Psy Pss P3; P3s
P11 Pi3 Py; P13
S35= »  S36=
Psy Ps3 P3; P33

-P1g P13 Pi5

=|-P3g P33 P35

-Psg Ps3 Pss

Pis
P35

Pss

P11-Pyy
P31-P3g
Psy-Psg

Py; P13-Pie
P3; P33-P3s
P5y Ps53-Pse
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If the values of ¢ given by egqs. (9) are introduced to eqs. (8b),
latest may be rearranged in the following form

(8d)

and (3f) the

T11e2tT)pey+T 1366

Tpy1e2%Tp0ey+To 386

T31e2*T32e44T3 386
T11=P22+(P23521*P25531)/S
T12=Pou+(P23S22+P55832)/S
Ty3=P2g+(P23S;3+P25533)/S
T217Py2+(Py1511*Py3531) /S
T22=Pyy+(Pyy S12+Py 353,)/S
T33P+ (Py1S13+Py3533)/S
T31=Pg2+(Pe1S11%P63521)/S
T32=Peu+(Ps1S12+P63522)/8
T33=Pes*+(Ps1S13*P63523)/S

+ +
lex T150y T150Z
+ +
T21+0x T250y Tzsoz

+ +T
T340, *T350,*T360,

where

Ty4,=1-(P23824+P25S34)/S
T15=-(P23525+P25835)/S
T16=-(P23826*P25536)/S
T24=-(Py1S14+Py 3834} /8
Tp5=1-(Py1S15+Py 3835)/S
To6=-(Py1S16*Py3536)/S
T34=-(Pg1514+P63524)/S
T35=-(Pg1S15*P63S25)/S
T36=1~(Ps1516+P63526)/S

(10)
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From eqs. (10) one can calculate the strain components
€2=A1+10X+Al+20y+A430Z

ey=As 10X+A520y

= + +
e6 =610, s 20, A5 30,

where

1
Ay1=g|Tay Taz

As1=%|Tp1 Toy

A = Ty Tap
T31 Ts2

and the other

€1=A110,*A) 20y
e3=A210, A220,

e5=A310,*A320,

where

+A5302 (11)
T3 ) T15 T1o Ti3 ) T1s T2 Tis
Taa|>  Aua=g|Tes Toz Tag|s  Aus=g Ty T2p To3
T33 T35 T32 Ts3 T3¢ T3z T33
T3 ) T11 T15 T3 1 T11 Ti6 Ti3
Tazfs  As2=|T21 T2s Tasfs As3=z|T21 Tz6 Tas
T3z T31 T35 T33 T31 T36 T33
Tiy ) T1; Tiz Tis . T11 Ti2 The
Touls  Ae2=f|T21 T2z Tos|s Ag3=|T21 T2z T2
T3y T3y T32 T3s T31 T3 T3s
ISE

Ty3

T33

strain components
+

A1 30 z
+A; 30

Az30,

+
A3302

according to (9) and (11) are

(12)

Ayr=(Sp5+S21 42 +S22A52+523R62) /S

Ap1=(814+S114,1+S12A51%513A61)/8 Ar3=(S26+521Au3+S22A53+523R63)/S
A12=(S15%511A42+512A52+S13A62) /S Ag1=(S34+S31A41+S32A51+533R61) /S

Ay 3=(S16+S11A43+512A53+513A63)/8

A32=(S35+531A42+532A52+533A62)/S

Ap1=(S25+521A41*S22A51%523A61)/S  A33=(S36+531A43+S32A53*S33R6 3)/8

Then according to equations (4) we have
e (MAL YAy I)UX"'(YIAI2+Y2A42)0y+(Y1A13+Y2Al+3)02

e, = (814 1+62A51)0, * (81425 *82A52 )0, * (B1A23*B2A53)0, a3

e,= (01431 %2861 0, *(a1A30+ 0262 )0 * (i3 gt 3)o,
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which gives a part of constitutive equation of the group of cells
in the form

€ C11 Ciz2 Ci3| [o]

x X
eyl = |C21 C22 Co3f |oy (14)
€, C31 C32 C33] o,

where Ci' are the compliances of the whole group expressed by
respectl%e coefficients in eq. (13) i.e. for example

Cir=vi1Ai1ty oAy Cr2=v1A12+Y2A42 - .. a5
C31781A21%B2A5, C22=B1A22+B2As55 ...

----------------------------------

In analogous way by solution of sets of eqs. (4), (5) and (6) we
get for shear deformation :

B Y.
= (5= = (5Ll
fyz (§R1j)OYZ xz (§R4i)°xz
[s 2 Y=
k i
=( =(I5— 16
oy Ry %2y "y ey ae)
o 8.
=(X (gl
€2x (Eﬁgi)ozx yx (§R6j)0yx
where the coefficients R are given by
RIJ =§1§YiakEl+4 (1,3,k) R4i=§i8j GtkE77(i:j »k)
R, =22y.B.Es55(1,],k Re.=IZB.aEga(i,], 7
2K inlﬁj 55(1,3,k) 55 jiBJuk ga(i,j,k) (17)
R..=rrv.B.Ege(di,5,k R..=riy.a Eoq(i,j,k
Tk inlBJ 66 (157,Kk) 6j ileak 99 (i,3,k)

Relations (14) and (16) play a role of constitutive equations of
the group of eight cells. The compliance constants C.. in these
relations can be recalculated to respective modulus ~~constants
for the group which are dependent on modulae of cells constitu-
ting the group. In this way the solution described by eq. (1) is
found in non-explicite form and may be used as a recurence rela-
tion in the renormalization procedure.
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